

DOLPHIN PUBLICATIONS

239, Keelappatti Street, SRIVILLIPUTTUR - 626 125. Virudhunagar Dt. TN.

Mail us : dolphin.pub2005@gmail.com | Visit us : www.kalvidolphin.com

Price: Rs. 171

Greetings to beloved Teachers and Students,

"Science is a beautiful gift to humanity, we should not distort it."

- Dr. APJ Abdul Kalam

As quoted by Kalam sir, Science is a beautiful gift to us. Students are the future pillars of the nation. We should develop our interest towards science and technology. It will help us think logically.

Dolphin guides -10^{th} Standard Science has been prepared in order to fulfill the needs of the students in different learning levels. The answers are very precise.

SALIENT FEATURES:

- 1. Answers for All Government Model and Exam Questions.
- 2. Answers for Textual Exercises.
- 3. Additional Questions and Answers for Higher Order Thinking.
- 4. Collection of Formula.
- 5. Practical Manual.

We hope our guide will kindle the scientific urge among the students. It also leads you to score 100/100 in the upcoming SSLC Public Examination.

"Dream is not that you see in sleep, dream is something that does not let you sleep"

Best Wishes From
The Publisher

TO ORDER BOOKS

Respected Head of the Institutions and Teachers,

Thank you for your support to Dolphin Publications.

You are the reason for our grand success.

Now you can order your needed copies by sending the same in your school letter pad.

For order please

Mobile No : 9865306197 / 8925677710 / 9943567646

Whatsapp No: 9345314146 Sms : 9345330937

Website : www.kalvidolphin.com

E-mail ID : dolphin.pub2005@gmail.com

BANK DETAILS (FOR DIRECT DEPOSIT)

D.D. / Cheque:

Should be drawn in favour of 'Dolphin Publications' payable at Srivilliputtur.

ACCOUNT DETAILS

KARUR VYSYA BANK

A/C No.

IFSC CODE: KVBL0001804

BRANCH: Srivilliputtur

ICICI BANK

A/C No : 446005500030

IFSC CODE: ICIC0004460

BRANCH : Srivilliputtur

CITY UNION BANK

: 1804135000006000 | A/C No : 328109000204092

IFSC CODE: CIUB0000328

BRANCH: Srivilliputtur

TAMILNADU MERCANTILE BANK

A/C No : 328150310875103

IFSC CODE: TMBL0000328

BRANCH: Srivilliputtur

் பணம் செலுத்திய பின் கீழ்க்கண்ட தொலைபேசி எண்களில் கண்டிப்பாக தகவல் தெரிவிக்கவும்

98653 06197, 89256 77710, 99435 67646

- அறிவியல் மனித இனத்துக்கான ஒரு அழகான பரிசு நாம் அதை சிதைத்து விடக்கூடாது.
- நாம் அனைவருக்கும் ஒரே மாதிரி திறமை இல்லாமல் இருக்கலாம். ஆனால் அனைவருக்கும் திறமையை வளர்த்துக்கொள்ள ஒரே மாதிரி வாய்ப்புகள் உள்ளன.
- நீங்கள் சூரியனைப் போலப் பிரகாசிக்க வேண்டுமானால், முதலில் சூரியனைப்போல எரிய வேண்டும்.
- ெமுடியாத விஷயங்கள் குறித்து கனவு காண்பவா்களே அவற்றை வெற்றி கொள்ள முடியும்.
- க்ஷ்டம் வரும் போது கண்ணை மூடாதே, அது உன்னைக் கொன்றுவிடும். கண்ணைத் திறந்து பார், நீ அதை வென்று விடலாம்

- Dr. A.P.J. அப்துல்கலாம்

Table Of Contents

Unit	Title	Page No.	Month
1.	Laws of Motion	1	June
2.	Optics	12	July
3.	Thermal Physics	21	August
4.	Electricity	28	September
5.	Acoustics	40	October
6.	Nuclear Physics	50	November
7.	. Atoms and Molecules		June
8.	Periodic Classification of Elements	68	July
9.	Solutions	75	August
10.	Types of Chemical Reactions	82	October
11.	Carbon and its Compounds	91	November
12.	Plant Anatomy and Plant Physiology	98	June

Unit	Title	Page No.	Month
13.	Structural Organisation of Animals	104	June
14.	Transportation in Plants and Circulation in Animals	109	July
15.	Nervous System	118	July
16.	Plant and Animal Hormones	126	August
17.	Reproduction in Plants and Animals	133	August
18.	Genetics	142	September
19.	Origin and Evolution of Life	151	October
20.	Breeding and Biotechnology	157	October
21.	Health and Diseases	165	November
22.	Environmental Management	173	November
23.	Visual Communication	181	December
	Practical Manual	183-200	
	Govt. Public Exam Question Paper April 2025	201	

S. No.	Formula		
1.	Linear Momentum	$P = m \times v$	Kg ms ⁻¹
2.	Torque	$\tau = F \times d$	Nm
3.	Moment of Couple	$M = F \times S$	Nm
4.	Resultant force parallel forces acting in the same direction	$F_{\text{net}} = F_1 + F_2$	N
5.	Resultant force parallel unequal forces acting in the same direction	$F_{net} = F_2 - F_1$	N
6.	Force	$F = m \times a$	N
7.	Impulse	J = F x t	Ns
8.	Acceleration due to gravity	$g = \underline{GM}$ R^2	ms ⁻²
9.	Change in momentum	$\Delta p = P_f - P_i$	Kg ms ⁻¹
10.	Mass of the Earth	$M = gR^2$ G	kg

Textbook Evaluation

PAGE-13

I. CHOOSE THE CORRECT ANSWER

1. Inertia of a body depends on

(APR-24)

- a) weight of the object
- b) acceleration due to gravity of the planet
- c) mass of the object d) Both a & b

Ans: c) mass of the object

2. Impulse is equal to

(PTA-1)

- a) rate of change of momentum
- b) rate of force and time
- c) change of momentum

d) rate of change of mass

Ans: c) change of momentum

3. Newton's III law is applicable

- a) for a body is at rest
- b) for a body in motion
- c) both a and b
- d) only for bodies with equal masses

Ans: c) both (a) & (b)

<u> </u>	JEFFIIN-IU SCIE	ince	UNI	11-1	UIVIVI	AL MUDITUM
4.	Plotting a graph	for moment	tum on the Y-	9. If the Earth	shrinks to 50	0% of its real
	axis and time on X	-axis. Slope	of momentum-	radius its mas	s remaining	the same, the
	time graph gives			weight of a bod	ly on the Eart	h will
	a) Impulsive force	b) Accelera	ation	a) decrease by 5	•	
	c) Force	d) Rate of	force	c) decrease by 2	<i>'</i>	•
			Ans: c) Force			crease by 300%
<u>5.</u>	In which of the following	lowing sport	the turning of	10. To project	the rockets	which of the
	effect of force used	1		following princ		
	a) swimming	b) tennis		9.	,	G-22, JULY-24)
	c) cycling	d) hockey				
			Ans: c) cycling	a) Newton's thin		
_	TEN 14 0 (1 1	-2 -1		b) Newton's law	_	
6.	o o	is z. It can b	e also	c) law of conser		
	expressed as	1 > 3 77 -1		d) both a and c	Ans:	d) both a and c
	a) cms ⁻¹	b) Nkg ⁻¹				
	c) N $m^2 kg^{-1}$	d) $cm^2 s^{-2}$	1	ADDITIO	NAL QUES	TIONS
			Ans: b) NKg ⁻¹			
7.	One kilogram forc	e equals to	(APR-25)	11. F be the force b		-
	a) 9.8 dyne	b) 9.8 × 10	4 N	at a certain dist		
	c) 98×10^4 dyne	d) 980 dyn	e	them is doubled	l then the gra	vitational force
		Ans: o	e) 98×10^4 dyne	F will be	1 \ E/2	(PTA-5)
8.	The mass of a bo	ody is meas	ured on planet	a) 2F c) F/4	b) F/2 d) 4F	Ans: c) F/4
	Earth as M kg. Wl	nen it is take	en to a planet of		<u>u</u> , 11	71113: 0,174
	radius half that o	f the Earth	then its value	12. The force r	equired to	produce an
	will be	kg		acceleration of	1cm s ⁻² on a b	ody of mass 1 g
	a) 4 M	b) 2M		is		(PTA-6)
	c) M/4	d) M	Ans: d) M	a) 1 N	b) 10 N	
	,	,	,	c) 10^2N	d) 1 dyne	Ans: d) 1 dyne
			וו בווו וגויד	HE BLANKS		
1.	To produce a displa					Ans: Force
2.	Passengers lean for	ward when si	udden brake is app	plied in a moving vehic	cle. This can be	e explained
	by				Ans: Ir	nertia of motion
3.	By convention, the	clockwise n	noments are taker	n as and	the anticlockw	ise moments are
	taken as				Ans: No	egative, Positive
4.	is used	l to change th	ne speed of car.			Ans: Gear
5.	A man of mass 100	kg has a wei	ght of	_ at the surface of the	Earth.	Ans: 980 N

III. STATE WHETHER THE FOLLOWING STATEMENTS ARE TRUE OR FALSE. CORRECT THE STATEMENT IF IT IS FALSE

1. The linear momentum of a system of particles is always conserved.

Ans : False.

Correct Statement: The linear momentum of a system of particles is always conserved when no

external force is applied.

2. Apparent weight of a person is always equal to his actual weight.

Ans : False.

Correct Statement: Apparent weight and actual weight is not equal during upward or downward

motion.

3. Weight of a body is greater at the equator and less at the polar region.

Ans : False.

Correct Statement: Weight of a body is **less at the equator and greater** at the polar region.

4. Turning a nut with a spanner having a short handle is so easy than one with a long handle.

Ans : False.

Correct Statement: Turning a nut with a spanner having a long handle is so easy than one with a

short handle.

5. There is no gravity in the orbiting space station around the Earth. So the astronauts feel weightlessness.

Ans : False.

Correct Statement: The space station and astronauts have equal acceleration, they are under free fall

condition, So the astronaut and space station are in the state of weightlessness.

IV. MATCH THE FOLLOWING (PTA - 1)

S. No.	Column I	Column II
1.	Newton's I law	(a) propulsion of a rocket
2.	Newton's II law	(b) stable equilibrium of a body
3.	Newton's III law	(c) law of force
4.	Law of conservation of linear momentum	(d) flying nature of bird

Answer
b) stable equilibrium of a body
c) law of force
d) flying nature of bird
a) propulsion of a rocket

V. ASSERTION & REASONING

Mark the correct choice as

- a) If both the assertion and the reason are true and the reason is the correct explanation of assertion.
- b) If both the assertion and the reason are true, but the reason is not the correct explanation of the assertion.
- c) Assertion is true, but the reason is false.
- d) Assertion is false, but the reason is true.
- 1. Assertion: The sum of the clockwise moments is equal to the sum of the anticlockwise moments.

Reason: The principle of conservation of momentum is valid if the external force on the system is

zero.

Ans : b) If both the assertion and the reason are true, but the reason is not the correct

explanation of the assertion

2. Assertion: The value of 'g' decreases as height and depth increases from the surface of the Earth.

Reason: 'g' depends on the mass of the object and the Earth

Ans : c) Assertion is true, but the reason is false

ADDITIONAL QUESTIONS

3. Understand the assertion and the reason given and choose the correct choice.

(PTA-6)

Assertion: When a person swims he pushes the water using the hands backward and the water pushes the person in the forward direction

Reason: For every action there is an equal and opposite reaction

- a) Both the assertion and the reason are true and the reason is the correct explanation of assertion.
- b) Both the assertion and the reason are true, but the reason is not the correct explanation of the assertion.
- c) Assertion is true, but the reason is false.
- d) Both the assertion and the reason are false.

Ans: a) Both the assertion and the reason are true and the reason is the correct explanation of assertion.

VI. ANSWER BRIEFLY

1. Define inertia. Give its classification.

(AUG -22, APR -23)

The inherent property of a body to resist any change in its state of rest (or) the state of uniform motion, unless it is influenced upon by an external unbalanced force is known as Inertia.

Types of Inertia:

- ii) Inertia of rest.
- iii) Inertia of motion.
- iv) Inertia of direction.
- 2. Classify the types of force based on their application. (AUG-22)

Like parallel forces.

Unlike parallel forces.

3. If a 5 N and a 15 N forces are acting opposite to one another. Find the resultant force and the direction of action of the resultant force.

$$F_1 = 5 N F_2 = 15 N$$

Resultant Force	=	F_2-F_1
	=	15N – 5N
	=	10N.

The direction of action of the resultant force will be in the direction of 15 N.

4. Differentiate mass and weight. (MAY-22)

Sl. No.	Mass	Weight
1.	Quantity of matter contained in the body.	Gravitational force exerted on a body due to the gravity.
2.	SI unit is kilogram.	SI unit is Newton.
3.	It is a Scalar quantity	It is a vector quantity

5. Define moment of a couple.

(JULY-24)

Two equal and unlike parallel forces applied simultaneously at two distinct points constitute a couple. The line of action of the two forces does not coincide. It does not produce any translatory motion since the resultant is zero. But, a couple results in causes the rotation of the body. Rotating effect of a couple is known as moment of a couple.

$$M = F \times S$$

6. State the principle of moments. (APR-25)

When a number of like or unlike parallel forces act on a rigid body and the body is in equilibrium, then the algebraic sum of the moments in the clockwise direction is equal to the algebraic sum of the moments in the anticlockwise direction.

$$F_1 \times d_1 = F_2 \times d_2$$

7. State Newton's second law. (G.MQ, MAY-22)

The force acting on a body is directly proportional to the rate of change of linear momentum of the body and the change in momentum takes place in the direction of the force.

$$F = m \times a$$

8. Why a spanner with a long handle is preferred to tighten screws in heavy vehicles?

A spanner with a long handle give high tension with less force the turning effect of a body depends upon the distance of the line of action of the applied force from the axis of rotation. So spanner with long handle is preferred.

9. While catching a cricket ball the fielder lowers his hands backwards. Why?

The fielder lowers his hands to increase the interval of time to catch the ball, which resulting in a lesser impulse on his hands.

10. How does an astronaut float in a space shuttle? (JULY-24)

Astronauts are not floating but falling freely around the earth due to their huge oribital velocity. Since space shuttle and astronauts have equal acceleration, they are under free fall condition.

ADDITIONAL QUESTIONS

- 11. Use the analogy to the fill the blank (PTA-4)
 - a) opening a door: Moment of force

Opening a water tap:

Answer: moment of couple

b) pushing a bus by a group of people:

Like parallel forces

 12. Why the apples weigh more at poles than at equator? (PTA - 3

Weight of a body varies from one place to another place on the Earth since it depends on the acceleration due to gravity of the Earth (g), which is not the same at all places on the Earth. Since, weight W = mg, as g varies, the weight of a body is more at the poles than at the

equatorial region. So weight of apples will be more at poles than at equator.

13. Write short notes on gears.

(SEP-20)

A gear is a circular wheel with teeth around its rim. It helps to change the speed of rotation of a wheel by changing the torque and helps to transmit power.

VII. SOLVE THE GIVEN PROBLEMS

1. Two bodies have a mass ratio of 3:4 the force applied on the bigger mass produces an acceleration of 12 ms⁻². What could be the acceleration of the other body, if the same force acts on it.

$$m_1$$
: m_2 3: 4 $a_2 = 12 \text{ ms}^{-2}$ $a_1 = ?$

According to Newton's second law of motion.

$$F_1 = -F_2$$

$$m_1 \times a_1 = -(m_2 \times a_2)$$

$$3 \times a_1 = 4 \times 12$$

$$a_1 = \frac{48}{3}$$

$$a_1 = 16\text{ms}^{-2}$$

So acceleration due to the same force on the smaller body $a_1 = 16 \text{ ms}^{-2}$

2. A ball of mass 1 kg moving with a speed of 10 ms-1 rebounds after a perfect elastic collision with the floor. Calculate the change in linear momentum of the ball.

Mass of the ball (m) = 1 kgInitial speed (u) = 10 ms^{-1} Final speed (v) = 10 ms^{-1}

Change in momentum

$$\Delta p$$
 = mv - mu
 Δp = 1 (-10) - 1 (10)
= -10 - 10

 $\Delta p = -20 \text{ kg m s}^{-1}.$

3. A mechanic unscrew a nut by applying a force of 140 N with a spanner of length 40 cm. What should be the length of the spanner if a force of 40 N is applied to unscrew the same nut?

Force F_1 = 140 N Length (l_1) = 40 cm = 0.4m Force, F_2 = 40 N Length, (l_2) = ?

Length of the spanner,

$$\begin{array}{rcl} F_1 l_1 & = & F_2 l_2 \\ 140 \times 0.4 & = & 40 \times l_2 \\ l_2 & = & \underline{140 \times 0.4} \\ \end{array}$$

Length of the spanner $(l_2) = 1.4 \text{ m}$

4. The ratio of masses of two planets is 2:3 and the ratio of their radii is 4:7. Find the ratio of their accelerations due to gravity.

Accelerations due to	=	GM
gravity (g)		R ²
g_1 : g_2	=	?
M ₁ : M ₂	=	2: 3
R_1 : R_2	=	4: 7

· · - ·	70 0101100			
		$\frac{g_1}{g_2}$	=	$\frac{M_1}{M_2} \times \frac{R_2^2}{R_1^2}$
			=	$\frac{2}{2} \times \frac{7^2}{4^2}$
			=	$\frac{98}{48} = \frac{49}{24}$

Ratio of their Acceleration due to gravity $g_1: g_2 = 49: 24$

ADDITIONAL QUESTIONS

5. A lift is moving downwards with an acceleration of 1.8 ms⁻¹. Then what is the apparent weight realised by a man of mass 50 kg (PTA-1)

O		
Acceleration due to		
gravity for Earth (at sea	=	9.8 ms^{-2} .
level) is		
Acceleration (a)	=	1.8 ms ⁻¹
mass (m)	=	50 kg
Apparent weight R	=	m (g-a)
R	=	50 (9.8 -1.8)
	=	50 x 8

=400 N

6. A force of 5 N applied on a body produces and acceleration 5 cm s⁻². Calculate the mass of the body. (PTA-5)

$$F = 5 \text{ N}$$

$$a = 5 \text{ cm s}^{-2} (0.05 \text{ m s}^{-2})$$

$$F = Ma$$

$$m = \frac{F}{a}$$

$$m = \frac{5}{0.05}$$

$$m = 100 \text{ kg}$$

7. Calculate the velocity of a moving body of mass 5kg whose linear momentum is 2KGms⁻¹

Linear momentum = 2 kg ms⁻¹

Mass = 5 Kg

Linear momentum = Mass x Velocity

Velocity = Linear momentum

Mass

 $V = \frac{2}{5}$ $= 0.4 \text{ms}^{-1}$

VIII. ANSWER IN DETAIL

1. What are the types of inertia? Give an example for each type.

(PTA-3, AUG-22, APR-24)

There are 3 types of Inertia. They are

- I) Inertia at rest
- II) Inertia of motion
- III) Inertia of direction
- I) Inertia at rest:

The resistance of a body to change its state of rest is called inertia of rest.

- **Ex:** When you vigorously shake the branches of a tree, some of the leaves and fruits are detached and they fall down.
- II) Inertia of motion:

The resistance of a body to change its state of motion is called inertia of motion.

Ex: An athlete runs some distance before jumping because this will help him jump longer and higher.

III) Inertia of direction:

The resistance of a body to change its direction of motion is called inertia of direction.

Ex: When you make a sharp turn while driving a car, you tend to lean sideways,

2. State Newton's laws of motion?

(SEP-21, AUG-22)

Newton's First Law:

This law states that everybody continues to be in its state of rest or the state of uniform motion along a straight line unless it is acted upon by some external force.

Newton's Second Law:

According to this law, the force acting on a body is directly proportional to the rate of change of linear momentum of the body and the change in momentum takes place in the direction of the force.

Newton's Third Law:

Newton's third law states that for every action, there is an equal and opposite reaction. They always act on two different bodies.

3. Deduce the equation of a force using Newton's second law of motion. (APR - 23)

This law helps us to measure the amount of force. So it is also called as law of force.

Let 'm' be the mass of a moving body, moving along a straight line with an initial speed 'u' after a time interval of 't', the velocity of the body changes to 'v' due to the impact of an unbalanced external force 'F'.

Initial momentum of the body Pi = mu

Final momentum of the body $P_f = mv$

Change in momentum Δ_p = $P_f - P_i$ = mv - mu

By Newton's second law of motion,

Force, $F \propto$ rate of change of momentum.

 $F \propto \text{change in momentum / time.}$

 $F \alpha (mv - mu) / t$

$$F = Km (v-u) / t$$

Here K is the proportionality constant. K=1 in all systems of units. Hence,

$$F = \frac{m(v-u)}{t}$$

Since, acceleration = change in velocity/time, a = (v-u)/t. Hence, we have

4. State and prove the law of conservation of linear momentum. (G.M.O, APR-25)

There is no change in the linear momentum of a system of bodies as long as no net external force acts on them.

Let two bodies A and B having masses m_1 and m_2 move with initial velocity u_1 and u_2 in a straight line. Let the velocity of the first body be higher than that of the second body. i.e, $u_1>u_2$. During an interval of time t second, they tend to have a collision. After the impact, both of them move along the same straight line with a velocity v_1 and v_2 respectively.

Force on body B due to A,

$$F_A = m_2 (v_2-u_2)/t$$

Force on body A due to B,

$$F_B = m_1 (v_1-u_1)/t$$

By Newton's III law of motion,

Action force = Reaction force

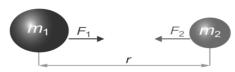
$$F_B = -F_A$$

$$m_1 (v_1-u_1)/t = -m_2 (v_2-u_2)/t$$

$$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$$

The above equation confirms in the absence of an external force, the algebraic sum of the momentum after collision is numerically equal to sum of the momentum before collision.

5. Describe rocket propulsion.


(PTA - 4, SEP-20, AUG-22)

- i) Propulsion of rockets is based on the law of conservation of linear momentum as well as Newton's third law of motion.
- ii) Rockets are filled with a fuel in the propellant tank.
- iii) When the rocket is fired, this fuel is burnt and a hot gas is ejected with a high speed from the nozzle of the rocket, producing a huge momentum.
- iv) To balance this momentum, an equal and opposite reaction force is produced in the combustion chamber, which makes the rocket project forward.
- v) While in motion, the mass of the rocket gradually decreases, until the fuel is completely burnt out.
- vi) Since, there is no net external force acting on it, the linear momentum of the system is conserved.
- vii) The mass of the rocket decreases with altitude, which results in the gradual increase in velocity of the rocket.
- viii) At one stage, it reaches a velocity, which is sufficient to just escape from the gravitational pull of the Earth. This velocity is called escape velocity.

6. State the universal law of gravitation and derive its mathematical expression (JUNE-23)

This law states that every particle of matter in this universe attracts every other particle with a force. This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between the centers of these masses. The direction of the force acts along the line joining the masses.

Force between the masses is always attractive and it does not depend on the medium where they are placed

Let, m_1 and m_2 be the masses of two bodies A and B placed r metre apart in space

Force
$$F \propto m_1 \times m_2$$

$$F \propto \frac{1}{r^2}$$

On combining the above two expressions

$$F \propto \frac{m_1 x m_2}{r^2}$$

$$F = \frac{Gm_1 m_2}{r^2}$$

Where G is the universal gravitational constant. Its value in SI unit is 6.674×10^{-11} N m² kg⁻².

7. Give the applications of universal law gravitation. (JULY-24)

- i) Dimensions of the heavenly bodies can be measured using the gravitation law.
- ii) Mass of the Earth, radius of the Earth, acceleration due to gravity, etc. can be calculated with a higher accuracy.
- iii) Helps in discovering new stars and planets.
- iv) One of the irregularities in the motion of stars is called 'Wobble' lead to the disturbance in the motion of a planet nearby. In this condition the mass of the star can be calculated using the law of gravitation.
- v) Helps to explain germination of roots is due to the property of geotropism which is the property of a root responding to the gravity.
- vi) Helps to predict the path of the astronomical bodies.

ADDITIONAL QUESTIONS

8. i) Shock absorbers are used in luxury buses.why? (PTA -2)

Absorbers are used in luxury buses shock absorbers to reduce jerks while moving on uneven roads.

ii) A weight of a man 686N on the surface of the earth. Calculate the weight of the same person on moon ('g' value of a moon is 1.625 ms⁻²)

W	=	686 N
W	=	mg
m	=	W/g
	=	686 9.8
	=	70 kg

Weight on moon,

$$w = mg$$
 $= 70 \times 1.625$
 113.75 N

iii) Name the law of motion used in flying of birds. Give another example for the same law Newton's third law of motion.

(E.g) Man swimming and Rocket propulsion.

When a person swims he pushes the water using the hands backwards (Action), and the water pushes the swimmer in the forward direction (Reaction)

9. A body of mass m is initially moving with a velocity u. When a force F acts on the body it picks up velocity v in t second so that the acceleration (a) is produced. Using this data derive the relation between the force, mass and acceleration.

(PTA-5)

Let 'm' be the mass of a moving body, moving along a straight line with an initial speed 'u' after a time interval of 't', the velocity of the body changes to 'v' due to the impact of an unbalanced external force 'F'.

Initial momentum of the body P_i = mu Final momentum of the body P_f = mv Change in momentum Δ_p = $P_f - P_i$ = mv – mu

By Newton's second law of motion,

Force, $F \propto$ rate of change of momentum.

 $F \propto \text{change in momentum / time.}$

 $F \alpha (mv - mu) / t$

F = Km (v-u) / t

Here K is the proportionality constant. K=1 in all systems of units. Hence,

$$F = \frac{m(v-u)}{t}$$

Since, acceleration = change in velocity/time,

$$a = (v-u)/t$$
. Hence,

$$F = m \times a$$

Force = mass \times acceleration

10. At what height from the centre of the earth surface, the acceleration due to gravity will be 1/4 the of its value on the surface of the earth.

(PTA-6)

The acceleration due to gravity = g

Height from the centre of the Earth, R' = R + h

The acceleration due to gravity at that height,

$$g' = \frac{g}{4}$$

=	$\left(1+\frac{h}{R}\right)^2$
	(10)
	h
=	$1+\frac{h}{R}$
	R
=	R + h
=	R'
	2R
	= = = = = = = = = = = = = = = = = = = =

From the centre of the Earth, the object is placed at twice the radius of the earth.

IX. HOT QUESTIONS

1. Two blocks of masses 8 kg and 2 kg respectively lie on a smooth horizontal surface in contact with one other. They are pushed by a horizontally applied force of 15 N. Calculate the force exerted on the 2 kg mass.

Mass of block 1, m ₁	=	8
Mass of block 2, m ₂	=	2kg
Force, F ₁	=	15N
Force exerted on 2	_	massXacceleration
kg, F ₂	_	massAacceleration
	=	$\frac{m_2}{m_1 + m_2} \times F$
	=	$\frac{2}{8+2}$ X 15
	=	3 N
Force exerted on 2	_	3N
kg, F ₂	_	31 N

2. A heavy truck and bike are moving with the same kinetic energy. If the mass of the truck is four times that of the bike, then calculate the ratio of their momenta. (Ratio of momenta = 1:2)

Since K.E are equal

$\frac{1}{2} m_1 {v_1}^2$	=	$\frac{1}{2}$ m ₂ v ₂ ²
$\frac{1}{2} m_1 v_1^2$	=	$\frac{1}{2}(4)(m_1)v_2^2$
v_1^2	=	4 v_2^2
\mathbf{v}_1	=	2 v ₂

Ratio of momenta	=	$\frac{m_1v_1}{m_2v_2}$
	=	$\frac{m_1v_1}{4m_1\;\left(\frac{v_1}{2}\right)}$
	=	$\frac{2}{4}$
	=	$\frac{1}{2}$

The ratio of their momenta = 1:2

- 3. "Wearing helmet and fastening the seat belt is highly recommended for safe journey"

 Justify your answer using Newton's laws of motion.
 - i) According to Newton's law of inertia, the passenger in the car are more likely to maintain the same state of motion, which will result in the banging the glass (wind shield) or thrown away in the front by breaking the glass windshield. So wearing seatbelts is highly recommended for a safe journey.
 - ii) According to Newton's third law, an equal and opposite reacting force on the ground is exerted on your body or head. When you do not wear a helmet, this reacting force can cause fatal head injuries.

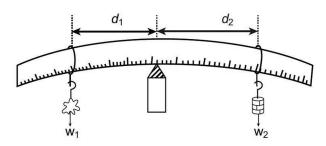
PRACTICALS

S. NO.		NAME OF THE EXPERIMENT	TIME
1.	ICS	Determination of weight of an object using the principle of moments	40 minutes
2.	PHYSICS	Determination of focal length of a convex lens	40 minutes
3.	1	Determination of resistivity	40 minutes
4.	RY	Identification of the dissolution of the given salt whether it is exothermic or endothermic	40 minutes
5.	MIST	Testing the solubility of the salt	40 minutes
6.	CHEMISTRY	Testing the water of hydration of salt	40 minutes
7.		Test the given sample for the presence of acid or base	40 minutes
8.	Ϋ́	Photosynthesis - Test tube and Funnel Experiment (Demonstration)	40 minutes
9.	TAN	Parts of a Flower	40 minutes
10.	BIO - BOTANY	Mendel's Monohybridcross	40 minutes
11.	BIO	Observation of Transeverse Section of Dicot stem and Dicot Root Observation of Models - Human Heart and Human Brain	40 minutes
12.	Ϋ́	40 minutes	
13.	BIO - ZOOLOGY	Identification of Blood Cells	40 minutes
14.	B	Identification of Endocrine Glands	40 minutes

PHYSICS

1. DETERMINATION OF WEIGHT OF AN OBJECT USING THE PRINCIPLE OF MOMENTS

Aim:


To determine the weight of an object using the principle of moments

Apparatus required:

A metre scale, a knife edge, slotted weights, thread

Procedure:

- A metre scale is supported at its centre of gravity by a knife edge or suspended by using a thread tied to its centre so that the scale is in the horizontal position. Ensure that the scale is in equilibrium position.
- \triangleright A known weight W₂ and an unknown weight W₁ are suspended from to either side of the scale using the weight hangers.
- Fix the position of one weight hanger and adjust the position of the second weight hanger such that the scale is in equilibrium.
- \triangleright Measure the distance d_1 and d_2 of the two weight hangers from the centre of the scale accurately.
- > The experiment is repeated for different positions of the unknown weight. Measure the distances. The reading are tabulated as follows:

Observation:

S. No.	Weight in the weight hanger (W ₂) kg	Distance of known weight d ₂ (m)	known weight unknown		$Unknown$ $weight$ $W_1 = \underbrace{W_2 \times d_2}_{d_1(kg)}$	
1	0.050	0.2	0.13	0.01	0.077	
2	0.100	0.2	0.255	0.02	0.078	
3	0.150	0.2	0.375	0.03	0.080	
				Mean	0.078	

Calculations:

Moment of a force can be calculated using the formula

Moment of the force = Force x distance

Clock wise moment by unknown weight $= \mathbf{W}_1 \times \mathbf{d}_1$ Anticlockwise moment by known weight $= \mathbf{W}_2 \times \mathbf{d}_2$ $\mathbf{W}_1 \times \mathbf{d}_1 = \mathbf{W}_2 \times \mathbf{d}_2$ Unknown weight \mathbf{W}_1 $= \mathbf{W}_2 \times \mathbf{d}_2$ **Result:** $= \mathbf{W}_1 \times \mathbf{d}_1$

Using the principle of moments, the weight of the unknown body $W_1 = 0.078$ Kg.

2. DETERMINATION OF FOCAL LENGTH OF A CONVEX LENS

Aim:

To determine the focal length of a convex lens by using

1. Distant object method

2. uv method

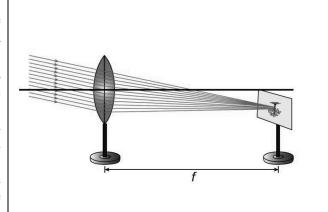
Apparatus required:

A convex lens, stand, wire gauze object, screen and measuring scale.

Formula:

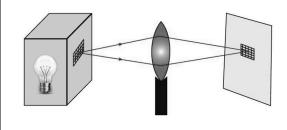
$$f = \frac{uv}{(u+v)}$$

Here,


u is the distance between the object and the convex lens

v is the distance of the image from the convex lens

f is the focal length of the convex lens


1. Distant Object Method:

- Fix the given convex lens vertically on the stand and place it on the table near an open window of the laboratory.
- ➤ Locate a distant object through the open window. Place the screen behind the convex lens.
- Adjust the position of the convex lens and the screen so as to get a sharp, inverted and diminished image.
- ➤ Measure the distance between the screen and the convex lens. This distance is equal to the approximate focal length of the convex lens (f).

2. uv - Method:

- Fix the given convex lens vertically on the stand and place it on the table.
- Place the wire gauze object on the left side of the convex lens. The distance between the object and the lens (u) is measured.
- ➤ Place the screen on the right side of the convex lens and adjust its position to get a sharp, inverted and diminished image.
- ➤ Measure the distance between the screen and the lens (v).
- ➤ Repeat the same procedure, by changing the distance of the object (u) and tabulate your observations.

Observation:

Focal length of the convex lens (By distance object method) is (f) = 10.5 cm

GOVT. EXAM - APRIL 2025

PART - I

No	te: (i) Answer all	the question	IS.		12x1=12	
	, ,		_	_	r alternatives and write the option	
		e correspon	ding ansv	ver.		
1.	One kilogram force		4	4		
	a) 9.8 dyne	ŕ		c) $98 \times 10^4 \text{dyne}$	d) 980 dyne	
2.	The eye defect 'Pre			•		
	<i>'</i>	b) conca		c) convex mirror		
3.	The work done in r	noving a cha	arge of 10	C across two points in a ci	ircuit is 100 J. What is the potential	
	difference between	•				
	a) 0.1 V	b) 10 V		c) 100 V	d) 1000 V	
4.	Artificial radioactiv	vity was disc	covered b	y:		
	a) Becquerel	,		c) Roentgen	d) Neils Bohr	
5.	is a	n important	metal to	form amalgam.		
	a) Ag	b) Hg		c) Mg	d) Al	
6.	When the pressure is increased at constant temperature, the solubility of gases in liquid					
	a) no change	b) increa	ises	c) decreases	d) no reaction	
7.	The pH of a solutio	n is 3. Its [O	H ⁻] conce	entration is:		
	a) 1 x 10 ⁻³ M	b) 3 M		c) 1 x 10 ⁻¹¹ M	d) 11 M	
	$C_2H_5OH + 3O_2$ -	→ 2CO ₂	+3H ₂ O is	S:		
	a) Reduction of ethanol			b) Combustion of et	hanol	
	c) Oxidation of ethanoic acid d) Oxidation of ethan				nal	
9.	Casparian strips ar	e present in	the	of the root.		
	a) cortex	b) pith		c) pericycle	d) endodermis	
10.	The centromere is t	found at the	centre of	the chromoso	me.	
		b) Metac		c) Sub-metacentric		
11.	World AIDS Day:					
	a) December 1	b) May 3	31	c) April 22	d) October 2	
12.	Which software is u	used to creat	te animat	ion?		
	a) Paint	b) PDF		c) MS Word	d) Scratch	
				PART - II		
No	te : Answer any seve	en questions	. Questio	n No.22 is compulsory.	7x2=14	
13.	Define one Calorie	_				
14.	What is a longitudin	al wave?				
15.	State two conditions	necessary fo	or rusting	of iron.		
16.	Match the following	g:	_			
	1. Functional group	p -OH	(i)	Benzene		
	2. Heterocyclic con	mpounds	(ii)	Potassium Stearate		
	3. Unsaturated con	-	(iii)	Alcohol		
	4. Soap	-	(iv)	Furan		
	5. Carbocyclic con	npounds	(v)	Ethene		
17.	What is the importar	-		art?		
	What is Bolting? Ho					
	phin.pub2005@gmai			201	www.kalvidolphin.com	

- 19. Identify the parts A, B, C and D in the given figure.
- 20. The degenerated wing of a Kiwi is an acquired character. Why is it called an acquired character?
- 21. What will happen if trees are cut down?
- 22. Find the mass percentage composition of methane (CH₄).

PART - III

Note: Answer any seven questions. Question No.32 is Compulsory.

7x4 = 28

- 23. Derive the ideal gas equation.
- 24. Differentiate the eye defects: Myopia and Hypermetropia.
- 25. Compare the properties of alpha, beta and gamma radiations.
- **26.** Write the applications of Avogadro's Law.
- **27.** (i) What is an alloy?
 - (ii) State the reasons for alloying.
- 28. Explain the mechanism of cleansing action of soap.
- 29. How does locomotion take place in leech?
- 30. With a neat labelled diagram, explain the structure of a neuron.
- 31. (i) What are the consequences of soil erosion?
 - (ii) How will you prevent soil erosion?
- **32.** A source producing a sound of frequency 90 Hz is approaching a stationary listener with a speed equal to (1/10) of the speed of sound. What will be the frequency heard by the listener?

PART - IV

Note: Answer all the questions. Draw diagrams wherever necessary.

3x7 = 21

- 33. a) (i) State and prove the law of conservation of linear momentum.
 - (ii) State the principle of moments.

OR

- **b)** (i) What is meant by electric current?
 - (ii) Name and define its unit.
 - (iii) Which instrument is used to measure the electric current? How should it be connected in a circuit?
- 34. a) (i) In what way hygroscopic substances differ from deliquescent substances?
 - (ii) The acquatic animals live more in cold region. Why?
 - (iii) Define volume percentage.

OR

- b) (i) Differentiate reversible and irreversible reactions.
 - (ii) A solid compound 'A' on heating decomposes into gas 'B' and 'C'. On passing the gas 'C' through water, it becomes acidic. Identify A,B and C.

35. a) Differentiate the following:

- (i) Monocot root and Dicot root
- (ii) Aerobic and Anaerobic respiration

OR

- **b)** (i) Explain the structure of a chromosome.
 - (ii) Distinguish between somatic gene therapy and germ line gene therapy.

எமது வெளியீடுகள் (STATE BOARD)

6th to 12th Std - STEP TO SUCCESS ENGLISH

10th to 12th Std - ELITE ENGLISH

6th to 12th Std - உன்னால் முடியும் தமிழ்

10th to 12th Std - அமுத சுரபி தமிழ்

6th to 10th Std - சமூகஅறிவியல்

(Tamil & English Medium)

8th to 10th Std - அறிவியல்

(Tamil & English Medium)

DOLPHIN PUBLICATIONS®

39. Keelappatti Street, Sriviiliputtur - 626 125. Virudhunagar Dt. TN

Cell: 98653 06197 / 89256 77710 / 99435 67646

93453 14146 / 93453 30937

Mail us : dolphin.pub2005@gmail.com | Visit us : www.kalvidolphin.com

